23.7k views
2 votes
+ PLAC N(-9, -4) O(-4, -3) R(-1,-5) T(-4, -7) H(-9, -6) (1) Reflect NORTH over the y-axis and label N'O'R'T'H'. (2) T(x, y) ->(x + 10, y + 7) and label N"O"R"T"H" (3) (x, y) -> (x, -y) and label N""O"R"T"H" (4) T(x, y) = (x - 3, y - 5) and label No RVTVH

+ PLAC N(-9, -4) O(-4, -3) R(-1,-5) T(-4, -7) H(-9, -6) (1) Reflect NORTH over the-example-1
User Mateu
by
4.5k points

1 Answer

4 votes

Given data:

The given coordinate of NORTH.

(1)

The final coordinate of N'O'R'T'H' is,


\begin{gathered} N^(\prime)=(9,\text{ -4)} \\ O^(\prime)=(4,\text{ }-3) \\ R^(\prime)=(1,\text{ }-5) \\ T^(\prime)=(4,\text{ -7)} \\ H^(\prime)=(9,\text{ -6)} \end{gathered}

(2)

The final coordinate of N''O''R''T''H'' is,


\begin{gathered} N^(\doubleprime)=(19,\text{ }3) \\ O^(\doubleprime)=(14,\text{ 4)} \\ R^(\doubleprime)=(11,\text{ 2)} \\ T^(\doubleprime)^{}=(14,\text{ 0)} \\ H^(\doubleprime)=(19,\text{ 1)} \end{gathered}

(3)

The final coordinate of N'''O'''R'''T'''H''' is,


\begin{gathered} N^(\doubleprime)^(\prime)=(19,\text{ -3)} \\ O^(\doubleprime)^(\prime)\text{ =(14, -4)} \\ R^(\doubleprime)^(\prime)\text{ =(11, -2)} \\ T^(\doubleprime)^(\prime)\text{ =(14, 0)} \\ H^(\doubleprime)^(\prime)=(19,\text{ -1)} \end{gathered}

(4)

The final coordinate of N''''O''''R''''T''''H'''' is,


\begin{gathered} N^(iv)=(16,-8) \\ O^(iv)=(11,\text{ -9)} \\ R^(iv)=(8,\text{ -7)} \\ T^(iv)=(11,\text{ -5)} \\ H^(iv)=(16,\text{ -6)} \end{gathered}

+ PLAC N(-9, -4) O(-4, -3) R(-1,-5) T(-4, -7) H(-9, -6) (1) Reflect NORTH over the-example-1
+ PLAC N(-9, -4) O(-4, -3) R(-1,-5) T(-4, -7) H(-9, -6) (1) Reflect NORTH over the-example-2
+ PLAC N(-9, -4) O(-4, -3) R(-1,-5) T(-4, -7) H(-9, -6) (1) Reflect NORTH over the-example-3
User Integrating Stuff
by
4.3k points