159k views
4 votes
Make the appropriate trigonometric substitution to convert this integral, and write the integrated in the space provided.

Make the appropriate trigonometric substitution to convert this integral, and write-example-1
User Fiodor
by
8.4k points

1 Answer

4 votes

Solution

Given


\int (5)/((x^2+16)^2)dx

Using the substitution x = 4 tan(t)


\begin{gathered} \Rightarrow dx=4\sec ^2tdt \\ \Rightarrow\int (5)/((x^2+16)^2)dx=\int (5)/(((4\tan t)^2+16)^2)*4\sec ^2tdt \\ =\int (5)/((16\tan^2t+16)^2)*4\sec ^2tdt=\int (5)/(16^2(\tan^2t+1)^2)*4\sec ^2tdt \\ =\int (5)/(16^2(\tan^2t+1)^2)*4\sec ^2tdt=(5)/(64)\int (\sec^2t)/((\tan^2t+1)^2)dt \end{gathered}

Since


\begin{gathered} \tan ^2t+1=\sec ^2t \\ \Rightarrow(5)/(64)\int (\sec^2t)/((\tan^2t+1)^2)dt=(5)/(64)\int (\sec^2t)/((\sec^2t)^2)dt=(5)/(64)\int (1)/(\sec^2t)dt \end{gathered}

(a)


=(5)/(64)\int (1)/(\sec^2t)dt

For b,

since we use the substitution


\begin{gathered} x=4\tan t \\ \Rightarrow(x)/(4)=\tan t \\ \Rightarrow t=\tan ^(-1)((x)/(4)) \end{gathered}

From the diagram above,


\begin{gathered} \cos t=\frac{4}{\sqrt[]{x^2+16}} \\ \sin t=\frac{x}{\sqrt[]{x^2+16}} \\ \Rightarrow(5t)/(128)+(5\cos t\sin t)/(128)+C=(5)/(128)\tan ^(-1)((x)/(4))+(5)/(128)\frac{4}{\sqrt[]{x^2+16}}*\frac{x}{\sqrt[]{x^2+16}}+C \\ =(5)/(128)\tan ^(-1)((x)/(4))+(5x)/(32(x^2+16))+C \end{gathered}

Hence, the answer in terms of x is


I=(5)/(128)\tan ^(-1)((x)/(4))+(5x)/(32(x^2+16))+C

Make the appropriate trigonometric substitution to convert this integral, and write-example-1
User Rhinoinrepose
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories