159k views
4 votes
Make the appropriate trigonometric substitution to convert this integral, and write the integrated in the space provided.

Make the appropriate trigonometric substitution to convert this integral, and write-example-1
User Fiodor
by
5.9k points

1 Answer

4 votes

Solution

Given


\int (5)/((x^2+16)^2)dx

Using the substitution x = 4 tan(t)


\begin{gathered} \Rightarrow dx=4\sec ^2tdt \\ \Rightarrow\int (5)/((x^2+16)^2)dx=\int (5)/(((4\tan t)^2+16)^2)*4\sec ^2tdt \\ =\int (5)/((16\tan^2t+16)^2)*4\sec ^2tdt=\int (5)/(16^2(\tan^2t+1)^2)*4\sec ^2tdt \\ =\int (5)/(16^2(\tan^2t+1)^2)*4\sec ^2tdt=(5)/(64)\int (\sec^2t)/((\tan^2t+1)^2)dt \end{gathered}

Since


\begin{gathered} \tan ^2t+1=\sec ^2t \\ \Rightarrow(5)/(64)\int (\sec^2t)/((\tan^2t+1)^2)dt=(5)/(64)\int (\sec^2t)/((\sec^2t)^2)dt=(5)/(64)\int (1)/(\sec^2t)dt \end{gathered}

(a)


=(5)/(64)\int (1)/(\sec^2t)dt

For b,

since we use the substitution


\begin{gathered} x=4\tan t \\ \Rightarrow(x)/(4)=\tan t \\ \Rightarrow t=\tan ^(-1)((x)/(4)) \end{gathered}

From the diagram above,


\begin{gathered} \cos t=\frac{4}{\sqrt[]{x^2+16}} \\ \sin t=\frac{x}{\sqrt[]{x^2+16}} \\ \Rightarrow(5t)/(128)+(5\cos t\sin t)/(128)+C=(5)/(128)\tan ^(-1)((x)/(4))+(5)/(128)\frac{4}{\sqrt[]{x^2+16}}*\frac{x}{\sqrt[]{x^2+16}}+C \\ =(5)/(128)\tan ^(-1)((x)/(4))+(5x)/(32(x^2+16))+C \end{gathered}

Hence, the answer in terms of x is


I=(5)/(128)\tan ^(-1)((x)/(4))+(5x)/(32(x^2+16))+C

Make the appropriate trigonometric substitution to convert this integral, and write-example-1
User Rhinoinrepose
by
5.4k points