Surface area of a cone:
![\begin{gathered} SA=\pi\cdot r\cdot l+B \\ SA=\pi\cdot r\cdot s+\pi\cdot r^2 \\ r=\text{ radius} \\ l=\text{slant height} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qutnu1xxx9k6y54o8kfall0lxixkxdrf0v.png)
For the given cone:
As you have the height of the cone and not the slant height. Use the Pythagorean theorem to find the hypotenuse in the right triangle formed by the radius and slant height:
![\begin{gathered} h^2+r^2=l^2 \\ \\ l=\sqrt[]{h^2+r^2} \\ l=\sqrt[]{(24in)^2+(10in)^2} \\ l=\sqrt[]{576in^2+100in^2} \\ l=\sqrt[]{676in^2} \\ l=26in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a9k9bey7rj13rqsrsznobcozg4aij26zti.png)
Find the surface area:
![\begin{gathered} SA=\pi\cdot10in\cdot26in+\pi\cdot(10in)^2 \\ SA=260\pi in^2+100\pi in^2 \\ SA=360\pi in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b9nykge686l8p5q2y6p283x5rwj58v0mfj.png)
Then, the surface area of the given cone is 360π square inches