![f(x)=x^2\text{ + 4x +5}](https://img.qammunity.org/2023/formulas/mathematics/college/5ktldjouo5sd8fayxl5i0yrvej7hvafzho.png)
Step 1:
To get the vertex
![\begin{gathered} x^2\text{ + 4x + 4 + 1} \\ (x^2+4x+4)\text{ + 1} \\ (x+2)^2\text{ + 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fq8bcthna2m579w6hg68kzr96g2i9ht30d.png)
Comparing this to the equation in the vertex form
![f(x)=a(x-h)^2\text{ + k}](https://img.qammunity.org/2023/formulas/mathematics/college/ieiw3zu9b6jr9rkwhmtg9by07eplpnbal4.png)
-h = 2
h= -2
k =1
So the vertex is (h,k) = (-2, 1)
The axis of symmetry is at -2
The minimum value can be obtained from the equation
![\begin{gathered} (4ac-b^2)/(4a) \\ \frac{4*1*5-4^2}{4\text{ x 1}} \\ (20-16)/(4) \\ (4)/(4) \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z5v3wtu4j92u21xey5i4hyx6cocwfqy1ao.png)
The vertex is (-2, 1)
The axis of symmetry is at -2
The minimum value is 1 ( i.e coordinate (-2,1)