Given:
In triangle ABC,
The angle C is a right angle.
![\begin{gathered} \angle B=45^(\circ) \\ c=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4grus2s1fo1wp2urvw2r81k0zmzem2qxd0.png)
To solve:
The triangle
Step-by-step explanation:
Since the given triangle has an angle of 45 degrees.
So, it is an isosceles right triangle.
By Pythagoras theorem,
![\begin{gathered} a^2+b^2=c^2 \\ a^2+a^2=2^2 \\ 2a^2=4 \\ a^2=2 \\ a=√(2) \\ \therefore b=√(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wbcjq4zufmb7fbe97lw5seq49x5xaona1e.png)
Thus, the length of the other two sides are
![a=√(2),b=√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/2xa9srcaqfvbh93675ymr8qcx9wxnnrvmc.png)
Final answer:
The other side lengths of the triangle are both equal to,
![√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/2tk9nnsgx1ipwtsdiozl197sxl4yier48u.png)