From the statement, we know that:
![\begin{gathered} \cos \theta=-\frac{\sqrt[]{2}}{3},\text{ where }\pi\leq\theta\leq(3)/(2)\pi, \\ \tan \beta=(4)/(3),\text{ where 0}\leq\theta\leq(\pi)/(2)\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hjl3gpn4wvi9215zbd9b1ctlc2yoxdjyut.png)
1) First, we look for the value of angle θ.
Plotting both sides of the equation, we have the graph:
Using a calculator, we get the following value of θ:
![\theta^(\prime)=\arccos (-\frac{\sqrt[]{2}}{3})\cong2.06.](https://img.qammunity.org/2023/formulas/mathematics/college/119nogkzdgj12rjakqaszqli20qbs82msf.png)
But to get an angle in the interval π ≤ θ ≤3π/2, the correct result is:

We can check this result from the graph above.
The of θ is:
![\sin (\theta)=-\frac{\sqrt[]{7}}{3}\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/9c9jj3x33czb945mifjea9446mi5u95ztl.png)
2) Secondly, we look for the value of angle β.
Using a calculator, we get the following value of β:

This result is in interval 0 ≤ θ ≤ π/2.
The sine and cosine of β are:

3) Using the results above, the sine of the sum of the angles θ and β is:

Replacing the values obtained above, we get:
![\sin (\theta+\beta)=(-\frac{\sqrt[]{7}}{3})\cdot(3)/(5)+(4)/(5)\cdot(-\frac{\sqrt[]{2}}{3})=-\frac{\sqrt[]{7}}{5}-\frac{4\cdot\sqrt[]{2}}{15}\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/9gr6pvltguf597ngi4yypi86jnakqddoq9.png)
Answer
![\sin (\theta+\beta)=-\frac{\sqrt[]{7}}{5}-\frac{4\cdot\sqrt[]{2}}{15}](https://img.qammunity.org/2023/formulas/mathematics/college/dxsm5tiede3e2kf78r46dcwzkl3q67weza.png)