Hello!
We have the binomial below:
![\mleft(w+4\mright)^2](https://img.qammunity.org/2023/formulas/mathematics/college/dqb14u1vuzu3n8iuxendfsu6baucdmjndp.png)
First, notice that we have two terms inside the square, right?
• w ,= first term
,
• 4 ,= second term
To solve it using the Binomial Square Pattern, we will have to follow some steps:
0. Square the first term
,
1. Multiply the first by the second term, then multiply it by 2
,
2. Square the second term
,
3. Sum all steps above.
Let me explain step by step now:
1)
![w\cdot w=w^2](https://img.qammunity.org/2023/formulas/mathematics/college/way9qvjmank5n9ed9r6hk370ilvfgk5occ.png)
2)
![(w\cdot4)\cdot2=4w\cdot2=8w](https://img.qammunity.org/2023/formulas/mathematics/college/nb3hwd7u4lmi63wi5r4u7klk1s41gvxo7t.png)
3)
![4\cdot4=4^2=16](https://img.qammunity.org/2023/formulas/mathematics/college/63gt6jczs9czdff1vgvwu0rkuuajeq0aau.png)
4)
![(w+4)^2=w^2+8w+16](https://img.qammunity.org/2023/formulas/mathematics/college/a9o7p3663nv7yigpah2zeuq9h2uzf7tl1d.png)
So, your answer will be:
w² +8w +16