230k views
2 votes
Find the derivative using the quotient rule. See attachment for equation.

Find the derivative using the quotient rule. See attachment for equation.-example-1
User Ben Damer
by
8.6k points

1 Answer

3 votes

Step 1:

Write the function


\text{y = }\frac{4x^3-3x^2}{4x^5\text{ - 4}}

Step 2:

Apply the quotient rule below to find the derivative of the function.


\begin{gathered} \text{If y = }(u)/(v) \\ \frac{d\text{ y}}{d\text{ x}}\text{ = }\frac{v(du)/(dx)\text{ -u}\frac{d\text{ v}}{d\text{ x}}}{v^2} \\ u=4x^3-3x^2 \\ v=4x^5-4_{}_{} \end{gathered}

Step 3:


\begin{gathered} u=4x^3-3x^2 \\ \frac{d\text{ u}}{d\text{ x}}=12x^2\text{ - 6x} \\ v=4x^5\text{ - 4} \\ \frac{d\text{ v}}{d\text{ x}}=20x^4 \end{gathered}

Step 4:

Substitute


\begin{gathered} \frac{d\text{ y}}{d\text{ x}}\text{ = }\frac{(4x^5-4)(12x^2-6x)-20x^4(4x^3-3x^2)^{}}{(4x^5-4)^2} \\ =\text{ }(48x^7-24x^6-48x^2+24x-80x^7+60x^6)/((4x^5-4)^2) \\ =\text{ }\frac{-32x^7+36x^6-48x^2+24x^{}}{(4x^5-4)^2} \\ =\text{ }\frac{4x(-8x^6+9x^5\text{ -12x +6)}}{16(x^5-1)^2} \\ Final\text{ answer} \\ =\text{ }\frac{x(-8x^6+9x^5\text{ - 12x + 6)}}{4(x^5-1)^2} \end{gathered}

User Diego Ferruchelli
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories