31.4k views
5 votes
Which choices are equations for the line shown below? Check all that apply.

Which choices are equations for the line shown below? Check all that apply.-example-1
User Enesa
by
2.9k points

1 Answer

0 votes

Answer:

Step 1:

We will calculate the slope of the line using the formula below


\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ \left(x_1,y_1\right)\Rightarrow\left(-2,0\right) \\ \lparen x_2,y_2)\Rightarrow\left(2,2\right) \end{gathered}

Bu substituting the values, we will have


\begin{gathered} m=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ m=(2-0)/(2-\left(-2\right)) \\ m=(2)/(2+2) \\ m=(2)/(4) \\ m=0.5 \end{gathered}

Step 2:

We will represent in the slope-intercept form using the formula below


\begin{gathered} m=(y-y_1)/(x-x_1) \\ 0.5=(\left(y-0)\right?)/(x-\left(-2\right)) \\ 0.5=(y)/(x+2) \\ y=0.5\left(x+2\right) \\ y=0.5x+1 \end{gathered}

Step 3:

We will represent the equation in point-slope form using the formula below


\lparen y-y_1)=m\left(x-x_1\right)

By substituting the values,we will have


\begin{gathered} \operatorname{\lparen}y-y_1)=m\left(x-x_1\right) \\ y-0=0.5\left(x-\left(-2\right)\right) \\ y-0=0.5\left(x+2\right) \\ \\ \operatorname{\lparen}y-y_2)=m\lparen x-x_2) \\ y-2=0.5\left(x-2\right) \end{gathered}

Hence,

The final answers are OPTION B, OPTION C, OPTION D

User Pretasoc
by
3.1k points