224k views
0 votes
Find the exact values of the six trigonometric functions of the angle 0 shown in the future

Find the exact values of the six trigonometric functions of the angle 0 shown in the-example-1
User Sarath Kn
by
4.6k points

1 Answer

7 votes

From the given right-angle triangle, we are provided with the following sides;


\begin{gathered} Hypotenuse=17 \\ Opposite=8 \end{gathered}

We will make use of the Pythagoras theorem to obtain the third side, which is the Adjacent side.

Thus, we have:


\begin{gathered} H^2=O^2+A^2 \\ 17^2=8^2+A^2 \\ 289=64+A^2 \\ 289-64=A^2 \\ 225=A^2 \\ A=\sqrt[]{225} \\ A=15 \end{gathered}

i)


\begin{gathered} Sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ Sin\theta=(8)/(17) \end{gathered}

ii)


\begin{gathered} Cos\theta=\frac{Adjacent}{\text{Hypotenuse}} \\ \text{Cos}\theta=(15)/(17) \end{gathered}

iii)


\begin{gathered} \text{Tan}\theta=\frac{\text{Opposite}}{\text{Adjacent}} \\ \text{Tan}\theta=(8)/(15) \end{gathered}

iv)


\begin{gathered} co\sec (\csc )\text{ is the inverse/reciprocal of sine} \\ \text{csc }\theta=\frac{Hypotenuse}{\text{Opposite}} \\ \csc \theta=(17)/(8) \\ \end{gathered}

v)


\begin{gathered} \sec \theta\text{ is the inverse/reciprocal of cos }\theta \\ \sec \theta=\frac{\text{Hypotenuse}}{\text{Adjacent}} \\ \sec \theta=(17)/(15) \end{gathered}

vi)


\begin{gathered} \cot \theta\text{ is the inverse/reciprocal of tan }\theta \\ \cot \theta=\frac{\text{Adjacent }}{\text{Opposite}} \\ \cot \theta=(15)/(8) \end{gathered}

User Carl Zheng
by
4.7k points