224k views
0 votes
Find the exact values of the six trigonometric functions of the angle 0 shown in the future

Find the exact values of the six trigonometric functions of the angle 0 shown in the-example-1
User Sarath Kn
by
8.1k points

1 Answer

7 votes

From the given right-angle triangle, we are provided with the following sides;


\begin{gathered} Hypotenuse=17 \\ Opposite=8 \end{gathered}

We will make use of the Pythagoras theorem to obtain the third side, which is the Adjacent side.

Thus, we have:


\begin{gathered} H^2=O^2+A^2 \\ 17^2=8^2+A^2 \\ 289=64+A^2 \\ 289-64=A^2 \\ 225=A^2 \\ A=\sqrt[]{225} \\ A=15 \end{gathered}

i)


\begin{gathered} Sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ Sin\theta=(8)/(17) \end{gathered}

ii)


\begin{gathered} Cos\theta=\frac{Adjacent}{\text{Hypotenuse}} \\ \text{Cos}\theta=(15)/(17) \end{gathered}

iii)


\begin{gathered} \text{Tan}\theta=\frac{\text{Opposite}}{\text{Adjacent}} \\ \text{Tan}\theta=(8)/(15) \end{gathered}

iv)


\begin{gathered} co\sec (\csc )\text{ is the inverse/reciprocal of sine} \\ \text{csc }\theta=\frac{Hypotenuse}{\text{Opposite}} \\ \csc \theta=(17)/(8) \\ \end{gathered}

v)


\begin{gathered} \sec \theta\text{ is the inverse/reciprocal of cos }\theta \\ \sec \theta=\frac{\text{Hypotenuse}}{\text{Adjacent}} \\ \sec \theta=(17)/(15) \end{gathered}

vi)


\begin{gathered} \cot \theta\text{ is the inverse/reciprocal of tan }\theta \\ \cot \theta=\frac{\text{Adjacent }}{\text{Opposite}} \\ \cot \theta=(15)/(8) \end{gathered}

User Carl Zheng
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories