Given the table, we have:
Add all probabilities
0.366 + 0.427 + 0.180 + 0.027 = 1
The table describes a probability distribution because all probabilities are between 0 and 1, and the sum of probabilities is equal to 1.
For mean:
![\begin{gathered} mean=0(0.366)+1(0.427)+2(0.180)+3(0.027) \\ =0.427+0.360+0.081 \\ =0.868 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vesu347ftax0bv1hpdzp5ggeg9iukp6avc.png)
For standard deviation:
![SD=√(0.366(0-0.868)^2+0.427(1-0.868)^2+0.180(2-0.868)^2+0.027(3-0.868)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/jfq5yrt4gkhlgk1o01qw4g0km6bvsbk73w.png)
Simplify:
![\begin{gathered} SD=√(0.366(-0.868)^2+0.427(0.132)^2+0.180(1.132)^2+0.027(2.132)^2) \\ SD=√(0.636576) \\ SD=0.798 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ekdmawe8e86cdavpotizvzqtjwo210kxwm.png)
Answer:
Yes, the table shows a probability distribution
mean = 0.868
standard deviation = 0.798