The compression in the spring is 4.31 m
Given data:
The mass of Perry is m=65 kg.
The distance traveled in air is h=1500 cm.
The spring constant is k=1500 N/m.
The amount of spring compression can be calculated by equating the gravitational potetial energy equal to the elastic potential energy of the spring. It can be applied as,
![\begin{gathered} \text{GPE}=\text{EPE} \\ \text{mgh}=(1)/(2)kx^2 \\ x=\sqrt{(2mgh)/(k)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/oheshbwatswnjaxf3hpxrmfxqd954utog0.png)
Here, x is the compression in the spring, and g is the gravitational acceleration.
The distance traveled in meters will be,
![\begin{gathered} h=1500cm*\frac{1\text{ m}}{100cm} \\ h=15\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/brdwyw1m01b6x74h72impq4h90nr931lzd.png)
Substitute the given values in above equation,
![\begin{gathered} x=\sqrt[]{(2(65)(9.8)(15))/(1025)} \\ x=4.31\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/n7yziuv7xy4muincnade2ivs89ehx0pxjz.png)
Thus, the compression in the spring is 4.31 m.