5.4k views
5 votes
The table below gives selected values for the function f(x). Use a trapezoidal estimation, with 6 trapezoids to approximate the value of

The table below gives selected values for the function f(x). Use a trapezoidal estimation-example-1
User Alexus
by
7.3k points

1 Answer

3 votes

Solution

- The formula for finding the integral of a function using the trapezoidal rule is:


A=(\Delta x_1)/(2)[f(x_0)+f(x_1)]+(\Delta x_2)/(2)[f(x_1)+f(x_2)]+...

- Applying the formula, we have:


\begin{gathered} \Delta x_1=1.1-1=0.1,\Delta x_2=1.2-1.1=0.1,\Delta x_3=1.5-1.2=0.3 \\ \Delta x_4=1.7-1.5=0.2,\Delta x_5=1.9-1.7=0.2,\Delta x_6=2.0-1.9=0.1 \\ \\ f(x_0)=f(1)=1 \\ f(x_1)=f(1.1)=2 \\ f(x_2)=f(1.2)=4 \\ f(x_3)=6 \\ f(x_4)=7 \\ f(x_5)=9 \\ f(x_6)=10 \end{gathered}

- Thus, we can find the Integral as follows:


\begin{gathered} A=(0.1)/(2)(2+1)+(0.1)/(2)(4+2)+(0.3)/(2)(6+4)+(0.2)/(2)(7+6)+(0.2)/(2)(9+7)+(0.1)/(2)(9+10) \\ \\ A=(0.3)/(2)+(0.8)/(2)+(3)/(2)+(2.6)/(2)+1.6+(1.9)/(2) \\ \\ A=5.9 \end{gathered}

Final Answer

The integral is 5.9

User Kharlos Dominguez
by
7.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories