The inequality is given as:
![7-|3-2y|\leq-7](https://img.qammunity.org/2023/formulas/mathematics/college/bh5c4iy5tf2xw419p0w9cnmzf3gs8fkdkj.png)
STEP 1: Subtract 7 from both sides.
![\begin{gathered} 7-|3-2y|-7\leq-7-7 \\ -|3-2y|\leq-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hh4iepude3qsp9d2sje42hty11hlfonr8v.png)
STEP 2: Multiply both sides by -1. This reverses the inequality.
![\begin{gathered} (-1)(-|3-2y|)\ge(-1)(-14) \\ |3-2y|\ge14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yr7ml5qc5erqvpa26znovjogxn9vilyxux.png)
STEP 3: Apply the Absolute Rule.
The Absolute Rule states that:
![\begin{gathered} \text{If} \\ |u|\ge a,\text{ when }a>0 \\ then, \\ u\ge a,\text{ or }u\leq-a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yrvv8qnea2vi2ve8ukziblh1o33lrxmhip.png)
Hence,
![\begin{gathered} 3-2y\ge14 \\ -2y\ge14-3 \\ -2y\ge11 \\ \text{Dividing both sides by }-2 \\ y\leq-5.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2c1s3qzl1r42ob8u28sfbh1k0d762pns3v.png)
or
![\begin{gathered} 3-2y\leq-14 \\ -2y\leq-14-3 \\ -2y\leq-17 \\ \text{Dividing both sides by }-2 \\ y\ge8.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4egj842wvjcuewehsbw76v4n3thqf1adfy.png)
Therefore, the solution is:
![\begin{gathered} y\leq-5.5 \\ or \\ y\ge8.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6dycoe7af2cu1qw7xjpri7m38j12nbqcs4.png)
In interval notation, the solution is written out to be:
![(-\infty,-5.5\rbrack\cup\lbrack8.5,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/vgnu88u2yh02mbdau4itk28xqclsqt6u0p.png)