We want to find the inverse of the following function
![f(x)=(2x+3)/(5x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/y6o1joblwzijuythiv5jj949lytxhwf61f.png)
To find the expression of f^-1(x) we begin by changing f(x) for y. So we get
![y=(2x+3)/(5x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/kj7e83h8hpi986r63qrvevsyeqp3wvkh76.png)
Now, we interchange x and y variables. So we get
![x=(2y+3)/(5y+4)](https://img.qammunity.org/2023/formulas/mathematics/college/cuhxzr0otw150gf2gnlvh1oxgyt5j6eyn4.png)
The goal is to solve this equation for variable y. We begin by multiplying both sides by 5y+4. So we get
![x\cdot(5y+4)=2y+3](https://img.qammunity.org/2023/formulas/mathematics/college/cnd9fmmoqcjztj0vxj3qkhf8ehmdxl54gx.png)
Now we subtract 2y on both sides, so we get
![x\cdot(5y+4)\text{ -2y=3}](https://img.qammunity.org/2023/formulas/mathematics/college/1tqsuqwh1zhxanzfdd7ccxvbe04ajpwpna.png)
Now we distribute the product on the left, so we get
![5\cdot xy+4\cdot x\text{ -2y=3}](https://img.qammunity.org/2023/formulas/mathematics/college/5dkiv1uucca3weguui1jcn92zn5nb896uo.png)
Now we group the terms that have the y variable and factor it out. So we get
![y(5x\text{ -2)+4x=3}](https://img.qammunity.org/2023/formulas/mathematics/college/ty27574ik18lsm41cxyfb4bxqloy6g9wvc.png)
now, we subtract 4x on both sides, so we get
![y(5x\text{ -2)=3 -4x}](https://img.qammunity.org/2023/formulas/mathematics/college/pzon3l1bwd5yntb0p9oymst1go3zucxc87.png)
Finally, we divide both sides by 5x-2. We get
![y=\frac{3\text{ -4x}}{5x\text{ -2}}](https://img.qammunity.org/2023/formulas/mathematics/college/83ec5qfcjkg1y9nh702hcbmez5ibc3qa0h.png)
Now, we replace y with f^-1(x). So we get
![f^{\text{ -1}}(x)=\frac{3\text{ -4x}}{5x\text{ -2}}](https://img.qammunity.org/2023/formulas/mathematics/college/rywuqgfzmmetobitgryvjg8u74iwgm6yq9.png)
this means that the numerator of f inverse is 3 -4x and the denominator of f inverse is 5x-2