Solution:
Given:
![\begin{gathered} p_o=22\text{ \%}=(22)/(100) \\ p_o=0.22 \\ n=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y8lfchg84ubuaf0950yppe2rcbtq2dc2dz.png)
![\hat{p}=(16)/(56)=0.286](https://img.qammunity.org/2023/formulas/mathematics/college/o56m1p5btuf69zm8eo2te1y5yx5d3pd8uc.png)
Using the Z-score formula below;
![\begin{gathered} Z=\frac{\hat{p}-p_o}{\sqrt{(p_o(1-p_o))/(n)}} \\ \\ Substituting\text{ the given and calculated values;} \\ Z=\frac{0.286-0.22}{\sqrt{(0.22(1-0.22))/(56)}} \\ Z=\frac{0.066}{\sqrt{(0.22*0.78)/(56)}} \\ Z=(0.066)/(√(0.003064)) \\ Z=1.192 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/36usevrc2yo9vehg82rp978bduzzt1spin.png)
Question a:
The probability that no more than 16 are members of a fraternity or sorority is;
![\begin{gathered} From\text{ Z-score tables,} \\ P(Z\leq1.192)=0.8834 \\ \\ To\text{ three decimal places,} \\ P(Z\leq1.192)=0.883 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ww7t14dpg8gque7rucyd55emixihnpid02.png)
Therefore, to three decimal places, the probability that no more than 16 are members of a fraternity or sorority is 0.883
Question b:
The mean of the distribution is;
![\begin{gathered} mean=np_o \\ mean=56*0.22 \\ mean=12.32 \\ \\ To\text{ one decimal place,} \\ mean=12.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8z7avo2c24mqpgi5g3z23urvexyuxj13wu.png)
Therefore, to one decimal place, the mean of the distribution is 12.3
Question c:
The standard deviation of the distribution is;
![\begin{gathered} \sigma=√(npq) \\ where: \\ q=1-p \\ q=1-0.22=0.78 \\ \sigma=√(56*0.22*0.78) \\ \sigma=√(9.6096) \\ \sigma=3.0999 \\ \\ To\text{ one decimal place;} \\ \sigma=3.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/um0fmc8k9q9hqwj949hzfaalmme4je1dg8.png)
Therefore, to one decimal place, the standard deviation of the distribution is 3.1