16.5k views
5 votes
The function h is defined as follows. h(x) = - 2x ^ 2 - 5 If the graph of h is translated vertically downward by 5 units, it becomes the graph of a function g, Find the expression for g(x)

The function h is defined as follows. h(x) = - 2x ^ 2 - 5 If the graph of h is translated-example-1

1 Answer

6 votes

ANSWER :

The answer is :


g(x)=-2x^2-10

EXPLANATION :

From the problem, we have :


h(x)=-2x^2-5

h(x) is translated vertically by 5 units downward and it becomes the graph of a function g.

So g(x) = h(x) - 5

negative 5 denotes that h(x) is translated 5 units downward.

So that will be :


\begin{gathered} g(x)=h(x)-5 \\ g(x)=(-2x^2-5)-5 \\ g(x)=-2x^2-10 \end{gathered}

User Yury
by
4.7k points