ANSWER:
General solution:
![x=(\pi)/(6)+n\pi](https://img.qammunity.org/2023/formulas/mathematics/college/54u5ub4zdy7b3xdohnkxhjyfdwgjy0b1hd.png)
Solution over the given interval:
![x=(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cwrlj3e9zwrz2mtenu0sx1ppidfoefrdgb.png)
Step-by-step explanation:
Let's solve for tan(x),
![\begin{gathered} 2\sqrt[]{3}\tan (x)-2=0\rightarrow2\sqrt[]{3}\tan (x)=2 \\ \rightarrow\sqrt[]{3}\tan (x)=1\rightarrow\tan (x)=\frac{1}{\sqrt[]{3}} \\ \\ \Rightarrow\tan (x)=\frac{\sqrt[]{3}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j9xz2p994e6iwr2870gv1s9pb9gtyg5qy7.png)
Now, we'll use the inverse trigonometric function for tangent:
![\begin{gathered} \tan (x)=\frac{\sqrt[]{3}}{3}\rightarrow x=\tan ^(-1)(\frac{\sqrt[]{3}}{3}) \\ \\ \Rightarrow x=(\pi)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iz5b5nz7ye78kad3x7i40x389g9o38i5u4.png)
Now, since tan(x) has a period of pi, the general solution for the equation is:
![x=(\pi)/(6)+n\pi,n\in Z](https://img.qammunity.org/2023/formulas/mathematics/college/adufzjbj1wrlrzz13hys05waflbdjasyv7.png)
For the interval [0,pi] we'll have the solution:
![x_{}=(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/vga4iiwl79w2mjm20k17l30eoha1xvwy8v.png)