We know that f(x) is a linear function.
We also know two points of the function:
![\begin{gathered} f(-2)=-3 \\ f(1)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svimwpfi33uul5noert7e6a046ux1ow91o.png)
We can calculate the slope of f(x) as:
![\begin{gathered} m=(f(x_2)-f(x_1))/(x_2-x_1) \\ m=(4-(-3))/(1-(-2)) \\ m=(4+3)/(1+2) \\ m=(7)/(2) \\ m=3.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q6ymo6e4uxj17h7bo43x57xy9by81hapv9.png)
With the slope m = 3.5 and one point, like (1, 4), we can write the equation in slope-point form and then rearrange:
![\begin{gathered} y-y_0=m(x-x_0) \\ y-4=3.5(x-1) \\ y-4=3.5x-3.5 \\ y=3.5x-3.5+4 \\ y=3.5x+0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/75394lf6fp6fy4h1ixludujjtohhjegwzo.png)
Answer: the equation is f(x) = 3.5x + 0.5