Given the inequalitiy;
![(x+4)(x+2)(x-3)\le0](https://img.qammunity.org/2023/formulas/mathematics/college/diu8rpok9l0g8qd6qvqahkjssl09glvmkk.png)
We begin by finding the factors of this inequality and the appropriate signs, as follows;
![\begin{gathered} x+4=0 \\ x=-4 \\ \text{Also,} \\ x+4<0 \\ x<-4 \\ x+4>0 \\ x>-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mhnw12ova1tfcvcxstdkkvsvqrwvmljccb.png)
Next we find the signs of x + 2
![\begin{gathered} x+2=0\Rightarrow x=-2 \\ x+2<0\Rightarrow x<-2 \\ x+2>0\Rightarrow x>-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7ahpgi5c4ddl5l0koa30qhjxkfox3jbs7.png)
And now we find the signs of x - 3
![\begin{gathered} x-3=0\Rightarrow x=3 \\ x-3<0\Rightarrow x<3 \\ x-3>0\Rightarrow x>3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xrtnvfdl98p8bqugn2xqugb8c1yjniyt1u.png)
Next step we identify the intervals that satisfy the required condition "less than or equal to zero."
That is;
![\begin{gathered} x<-4 \\ OR \\ x=-4 \\ x=-2 \\ OR \\ -2 We can now merge overlapping intervals on a number line;<p><strong>ANSWER:</strong></p>[tex]x\le-4\text{ or -2}\leq x\leq3]()