Explanation
Given: Normally distribution with the following information
![\begin{gathered} \mu=25.5kg \\ \sigma=4.29kg \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mgv8dbn8pdd7okin2dhiqgh8fqt2i0icrc.png)
Required: To determine the probability that for a fawn chosen at random:
• x is less than 30.04kg
,
• x is greater than 15.82kg
,
• x is between 31.44 and 33.91kg
This is achieved thus:
First, we can approximate to a standard normal distribution with the formula below:
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/sv72d3baryltp7s92ka7mqqorx2970ht60.png)
For Part A: x is less than 30.04kg
![\begin{gathered} P(x<30.04)=P(Z<(30.04-25.5)/(4.29)) \\ \Rightarrow P(Z<1.0583) \\ =0.8550 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3yqaldgmrgc0vygdk7zazc8g93ju9clzl.png)
For Part B: x is greater than 15.82kg
![\begin{gathered} P(x>15.82)=P(Z>(15.82-25.5)/(4.29)) \\ \Rightarrow P(Z>-2.2564) \\ =0.9880 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hdd95jqj62mnoi3wilghvlvh3akrj7z6j7.png)
For Part C: x is between 31.44 and 33.91kg
![\begin{gathered} P(31.44<strong>Hence, the answer is:</strong>[tex]\begin{gathered} (a)\text{ }0.8550 \\ \\ (b)\text{ }0.9880 \\ \\ (c)\text{ }0.0581 \end{gathered}]()