Given the function f which is defined as follows:
![f(x)=\begin{cases}-2,-2\le x<-1 \\ -1,-1\le x<0 \\ 0,0\le x<1 \\ 1,1\le x<2 \\ \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/jkmqyswcdune5cxmhp7nww9r5d7lo7gxpn.png)
To find the value of the function at a certain point of x, the value of x must satisfy the corresponding inequality
To find f(-2):
-2 lies in the first interval, f(-2) = -2
f(-0.5)
x = - 0.5 lies in the second interval, f(-0.5) = -1
f(1)
x = 1 lies in the fourth interval , f(1) = 1