32.6k views
1 vote
Find f(g(x)) and g(f(x)) 1. F(x) = X²-3x+1 g(x)=5x-7

1 Answer

4 votes

We are given the following functions


\begin{gathered} f(x)=x^2-3x+1 \\ g(x)=5x-7 \end{gathered}

Let us first find f(g(x)

Substitute x = 5x - 1 into the function f(x) and simplify


\begin{gathered} f(g(x))=(5x-7)^2-3(5x-7)+1 \\ f(g(x))=(25x^2-2\cdot5x\cdot7+49)^{}-15x+21+1 \\ f(g(x))=25x^2-70x+49^{}-15x+22 \\ f(g(x))=25x^2-70x-15x+49+22 \\ f(g(x))=25x^2-85x+71 \end{gathered}

Now let us find g(f(x))

Substitute x = x² - 3x + 1 into the function g(x) and simplify


\begin{gathered} g(f(x))=5(x^2-3x+1)-7 \\ g(f(x))=5x^2-15x+5-7 \\ g(f(x))=5x^2-15x-2 \end{gathered}

Therefore, f(g(x) and g(f(x)) are


\begin{gathered} f(g(x))=25x^2-85x+71 \\ g(f(x))=5x^2-15x-2 \end{gathered}

User Vitule
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories