Answer:
x > - 5
Step-by-step explanation:
The initial expression is:
![7x-30<-5(3-2x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ntcsffzke83k7wmagcjghm9zm1ia9i95a9.png)
First, we can apply distributive property on the right side as follows:
![\begin{gathered} 7x-30<-5\cdot3-5(-2x) \\ 7x-30<-15+10x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zwcr5a2dyhzigjicsi513clqm2g0dyx6ns.png)
Now, we can add 30 to both sides:
![\begin{gathered} 7x-30+30<-15+10x+30 \\ 7x<15+10x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dmefsjtmqapa3mwqa4ziyas867mfe75cuv.png)
Subtracting 10x from both sides:
![\begin{gathered} 7x-10x<15+10x-10x \\ -3x<15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xtga0eeidrdlmz1e05pr7xrtwfsyfuz4nc.png)
Finally, we need to divide by -3 but since -3 is a negative number, we change the symbol of the inequality as:
![\begin{gathered} (-3x)/(-3)>(15)/(-3) \\ x>-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jog4dlpwtmpg06zwfpj894ddb4myyn95d9.png)
Therefore, the solution is x > - 5