We are asked to simplify the following expression:
![\sqrt[]{125}\cdot(\sqrt[]{5}-\sqrt[]{7})](https://img.qammunity.org/2023/formulas/mathematics/college/2pla30qatbdfhtj3v5cwyykgjw1s0v0mpk.png)
We can begin with solving the square root of 125.
125 can be expressed as:
![125=5\cdot5\cdot5](https://img.qammunity.org/2023/formulas/mathematics/college/a77ixh97gqgpm5okubus050bfmkk640h62.png)
5 cubed is equal to 125.
Since we have a square root, it is convenient to express that 125 in squares:
![125=5^2\cdot5](https://img.qammunity.org/2023/formulas/mathematics/college/18i5mu2cvdvfyr9od552rbtb28he2iawr7.png)
Then, for the square root of 125:
![\sqrt[]{125}=\sqrt[]{5^2\cdot5}](https://img.qammunity.org/2023/formulas/mathematics/college/a06j2cvpih5wow2t7y24ukyhkizla4qs5y.png)
The square root of a product is equivalent to the product of the square roots:
![\sqrt[]{125}=\sqrt[]{5^2}\cdot\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/3tehdogb57o8ndrr465sd9fyjl97o49cqo.png)
We know that the square root of 5 squared is 5:
![\sqrt[]{5^2}=5](https://img.qammunity.org/2023/formulas/mathematics/college/wd4gcfglb3exc03g998etsu7kzptwhhjed.png)
Then, we can say that:
![\sqrt[]{125}=5\cdot\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/mbiw9316p7nc5cpt957jh10m70pit6ljgq.png)
We can replace the term in the first equation:
![\sqrt[]{125}\cdot(\sqrt[]{5}-\sqrt[]{7})=5\cdot\sqrt[]{5}\cdot(\sqrt[]{5}-\sqrt[]{7})](https://img.qammunity.org/2023/formulas/mathematics/college/z08epgfljvkiyb1nnbpkpgufdjbo7sp9jl.png)
Now, we can solve the parenthesis:
![5\cdot\sqrt[]{5}\cdot(\sqrt[]{5}-\sqrt[]{7})=5\cdot\sqrt[]{5}\cdot\sqrt[]{5}-5\cdot\sqrt[]{5}\cdot\sqrt[]{7}](https://img.qammunity.org/2023/formulas/mathematics/college/jas0o86rp3g0yc2ob0r5pxwrlouqjkkj7d.png)
The product of the square roots is equivalent to the square root of the product, then:
![\begin{gathered} 5\cdot\sqrt[]{5\cdot5}-5\cdot\sqrt[]{5\cdot7} \\ 5\cdot\sqrt[]{25}-5\cdot\sqrt[]{35} \\ 5\cdot5-5\cdot\sqrt[]{35} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/22wpswyjkvaswpocqj61fce57stk06g3tm.png)
Finally, the expression simplified will be:
![25-5\cdot\sqrt[]{35}](https://img.qammunity.org/2023/formulas/mathematics/college/wdy8vsn83mj3s2duwlbfhbq599g3fts2t9.png)