One whole unit circle has an angle of 2π. So, if our angle is 5π, this would be two revolutions and a half. This means that the terminal ray of this angle lies in Quadrant II at the x-axis.
The angle has an x-value of -1, a y-value of 0, and an r-value of 1.
So, the value of the six trigonometric functions are:
![sin5\pi=(y)/(r)\Rightarrow sin5\pi=(0)/(1)\Rightarrow sin5\pi=0](https://img.qammunity.org/2023/formulas/mathematics/college/8r108zgyw9lw0wywq71ck4lwfvu9r7l2i9.png)
![cos5\pi=(x)/(r)\Rightarrow cos5\pi=(-1)/(1)\Rightarrow cos5\pi=-1](https://img.qammunity.org/2023/formulas/mathematics/college/7w60ozn3192yikwpsmwirotjpr5z1p1vyr.png)
![tan5\pi=(y)/(x)\Rightarrow tan5\pi=(0)/(-1)\Rightarrow tan5\pi=0](https://img.qammunity.org/2023/formulas/mathematics/college/10nf9da46m9wc58vtp4a1czv49dwgcjw28.png)
![csc5\pi=(r)/(y)\Rightarrow csc5\pi=(1)/(0)\Rightarrow csc5\pi=undefined]()
![sec5\pi=(r)/(x)\Rightarrow sec5\pi=(1)/(-1)\Rightarrow sec5\pi=-1](https://img.qammunity.org/2023/formulas/mathematics/college/y9zd1xlzc5pb5xpe4ucdylmnk5zmoqwpco.png)
![cot5\pi=(x)/(y)\Rightarrow cot5\pi=(-1)/(0)\Rightarrow cot5\pi=undefined]()