The coins are in the shape of a cylinder.
The formula to calculate the volume of a cylinder is given as
![V=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/axumboiozoejyargdo4sskcbefipwsp4rb.png)
where
![\begin{gathered} r=\text{ radius} \\ h=\text{ height} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8se2s1za2sc0zwhxznezfu7t0c6iews6da.png)
The individual coin has the following dimensions:
![\begin{gathered} r=1\text{ in} \\ h=0.0625\text{ in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yme8g43rprbnyqjd6nrzi61qfrc2ysnsyn.png)
Thus, the volume of one coin can be calculated as
![\begin{gathered} V=\pi*1^2*0.0625 \\ V=0.196\text{ cubic inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ykxgvb45rinmrua49xk1uzyicn3jr4km6y.png)
If there are 225 coins in the chest, the combined volume of all the coins will be
![\begin{gathered} V_T=0.196*225 \\ V_T=44.1\text{ cubic inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hc6eqmmxvkc2imik1zitgscxh9d45zeuna.png)
The combined volume is 44.1 cubic inches.