Recall that a function f(x) is an exponential function if it is as follows:
![f(x)=ab^x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/esc7i697hsu1bt2lzhj1ftn7kog5r2qpds.png)
Notice that:
![\begin{gathered} 2=2\cdot1.3^0, \\ 2.6=2\cdot1.3^1, \\ 3.38=2\cdot1.3^2, \\ 4.394=2\cdot1.3^3, \\ 5.7122=2\cdot1.3^4, \\ 7.42586=2\cdot1.3^5\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/13yqexqt5ma2wbdyx5h89oulor84fu878c.png)
Therefore, the function described by the given table is:
![f(x)=2\cdot1.3^x\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/kjpn5f3pa3jo66xeoec7ljbgj457aaf6ub.png)
Therefore the given relationship represents an exponential relation.
Answer: The relation between x and y is exponential.