![\begin{gathered} S_n=(n)/(2)(a_1+a_n)\ldots\ldots\ldots\ldots\ldots\text{ arithmetic sequence } \\ S_n=(a_1\mleft(1-r^n\mright))/(1-r)\ldots\ldots\ldots\ldots\ldots\text{.geometric sequence} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/brp862o6piu0woau0mspipqoq9kgiyrnpr.png)
The sequence; 3, 9, 15, 21.
Now, from the definition of both sequence, A sequence is an arithmetic if it has a common difference. And a sequence is geometric if it has a common ratio.
A common difference d, is thus given as;
![d=a_2-a_1=\text{ }a_3-a_2](https://img.qammunity.org/2023/formulas/mathematics/college/qkblm4xqwdxydrn8as1dh677n9kh093r2i.png)
While a common ratio r, is given as;
![r=(a_2)/(a_1)=(a_3)/(a_2)](https://img.qammunity.org/2023/formulas/mathematics/college/8qf925nc7cw300qwbgcv0onugn5ugqxomq.png)
So, testing for the one that satisfy the sequence, we observed that;
![\begin{gathered} 21-15=15-9=9-3=6 \\ \text{That is, it has a common difference.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xj4ucaayzc2j5wzanbsf8begqb0njk0mij.png)
Thus, the sequence ia an arithmetic sequence.
Before we can find the Sum of the first ten terms, we have to get the tenth term;
![\begin{gathered} a_n=a_1+(n-1)d \\ \text{Where d=common difference} \\ a_(10)=\text{ tenth term} \\ a_1=\text{ first term} \\ n=\text{number of term} \\ a_(10)=3+(10-1)(6)=3+54=57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ihjk6s6dq7em28jeh6xa4jjaeqg52xap9.png)
Then;
![\begin{gathered} S_(10)=(10)/(2)(3+57) \\ S_(10)=5(60) \\ S_(10)=300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/styhg7yfgv1fd6lfoblywgru7jbgmhuje7.png)
Thus, the sum of the first ten terms is 300.