Consider the given system of equations,
![\begin{gathered} y=2x+7 \\ 2x+5y=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/47vuw54iwm83uuy4rbw7f5pyfkpfmbsoc1.png)
The point (-2,3) will be a solution of the system, if it satisfies both the equations of the system.
Check if point (-2,3) satisfies the first equation,
![\begin{gathered} y=2x+7 \\ 3=2(-2)+7 \\ 3=-4+7 \\ 3=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bm0x9te4bbmyskzhir9j2jxcvmkts1ng3l.png)
The result obtained is true, so the point (-2,3) satisfies the first equation.
Check if point (-2,3) satisfies the second equation,
![\begin{gathered} 2x+5y=10 \\ 2(-2)+5(3)=10 \\ -4+15=10 \\ 11=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x23b5whpf9vp91ylqy9bvjxhchwud971k9.png)
The result obtained is false, so the point (-2,3) does not satisfy the first equation.
Since the point (-2,3) fails to satisfy both the equations, so it cannot be a solution for the given system of equations.
So the correct option is 'NO'.