The two buses traveled over the same time.
Recall the formula to calculate distance:
![Distance=Speed* Time](https://img.qammunity.org/2023/formulas/mathematics/college/unjqo4uviiiozu1ues0b767ynmktm61dzt.png)
Therefore, the first bus will travel a distance:
![D_1=58T](https://img.qammunity.org/2023/formulas/mathematics/college/b01if16nnjxu3okisc2oeg6zp5fz3y1ynu.png)
and the second bus will travel a distance of:
![D_2=53T](https://img.qammunity.org/2023/formulas/mathematics/college/lcrsrw3i95pxngktrdl6m7s23m61txmg8f.png)
If the buses are 388.5 miles apart, then we have that:
![58T+53T=388.5](https://img.qammunity.org/2023/formulas/mathematics/college/63hy9xdsado5aslb29go74w6sjkwba4yw3.png)
Solving, we can solve as follows:
![\begin{gathered} 111T=388.5 \\ T=(388.5)/(111) \\ T=3.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/plkt2fvahdomnrjhqqoc0yd5i2jbnrsjr6.png)
The two buses will be 388.5 miles apart after 3.5 hours.