For this exercise you need to remember the following Transformation Rules for functions:
1. If:
![f(x)+k](https://img.qammunity.org/2023/formulas/mathematics/college/9cd98sb8rft7tx54i24gm8mi7jskq84kw8.png)
Then the function is translated "k" units up.
2. If:
![f(x)-k](https://img.qammunity.org/2023/formulas/mathematics/college/qv1hpv5ku4fx3exm71cuq5ztzi5y3ct12u.png)
Then the function is translated "k" units down.
3. If:
![-f(x)](https://img.qammunity.org/2023/formulas/mathematics/college/7vlssi6ejeh1sc8m6kl2mqi40hjsvemiau.png)
Then the function is reflected across the x-axis.
4. If:
![f(-x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7v18nh32pxuukyqhylntaw2l625z8jd2wt.png)
The function is reflected across the y-axis.
You have the following function f(x):
![f\mleft(x\mright)=2^(x-3)+1](https://img.qammunity.org/2023/formulas/mathematics/college/bdtd0r31j20iftwbzqg7peq77tbm9vczio.png)
Based on the above, you know that if it is reflected across the x-axis and translated 5 units up, the function g(x) is:
![\begin{gathered} g(x)=-(2^(x-3)+1)+5 \\ g(x)=-2^(x-3)-1+5 \\ g(x)=-2^(x-3)+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xw32i6643066eshcjn81w8tq4bc3chl1pg.png)
The answer is:
![g(x)=-2^(x-3)+4](https://img.qammunity.org/2023/formulas/mathematics/college/gos5ftxskh9v30rkridd7kt69uo0qpm5tv.png)