arc AC = 72°
arc BD = 108°
∠DEB = 90°
Step-by-step explanation:
AC:CB:BD:DA = 4:2:6:8
ratio of AC = 4
ratio of CB = 2
ratio of BD = 6
ratio of DA = 8
Total ratio = 4 + 2 + 6 + 8 = 20
Total angles in a circle = 360°
![\begin{gathered} arcAC=\frac{ratio\text{ of AC}}{total\text{ ratio}}*360\degree \\ \text{arc AC = }(4)/(20)*360\text{ =}(1440)/(20) \\ \text{arc AC = }72\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ow6npimj7hwu33dbb7pxngmhrg6xhlaw0q.png)
![\begin{gathered} \text{arc BD = }\frac{ratio\text{ of BD}}{\text{total ratio}}*360\degree \\ \text{arc BD = }(6)/(20)*360\degree\text{ =}(2160)/(20) \\ \text{arc BD = 108}\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bouv8a9zp47p78m14aav10x181y7dxsz8v.png)
Intersecting chord theorem:
∠DEB = 1/2(arc BD + arc AC)
∠DEB = 1/2(108 + 72)
∠DEB = 1/2(180)
∠DEB = 90°