203k views
5 votes
Please help me solve this triangle so I know I’m doing it right.

Please help me solve this triangle so I know I’m doing it right.-example-1
User Alena
by
8.0k points

1 Answer

4 votes

Let the given sides be,

x=7

y=11

z=6

To find:


\angle X,\angle Y,\angle Z

Using the formula,


\cos X=(y^2+z^2-x^2)/(2yz)

On substitution we get,


\begin{gathered} \cos X=(11^2+6^2-7^2)/(2(11)(6)) \\ \cos X=\frac{121+36-49^{}}{132} \\ \cos X=0.81818 \\ X=\cos ^(-1)(0.81818) \\ X=35.1^(\circ) \end{gathered}

Hence, the ange of X is,


\angle X=35.1^(\circ)

Next, we need to find the angle of y:

Using the formula,


\cos Y=(x^2+z^2-y^2)/(2xz)

On substitution we get,


\begin{gathered} \cos Y=(7^2+6^2-11^2)/(2(7)(6)) \\ \cos Y=\frac{49+36-121^{}}{84} \\ \cos Y=-0.42857 \\ Y=\cos ^(-1)(-0.42857) \\ Y=115.4^(\circ) \end{gathered}

Hence, the ange of Y is,


\angle Y=115.4^(\circ)

Next, we need to find the angle of Z:

Using the formula,


\cos Z=(x^2+y^2-z^2)/(2xy)

On substitution we get,


\begin{gathered} \cos Z=(7^2+11^2-6^2)/(2(7)(11)) \\ \cos Z=\frac{49+121-36^{}}{154} \\ \cos Z=0.87012 \\ Z=\cos ^(-1)(0.87012) \\ Z=29.5^(\circ) \end{gathered}

Hence, the ange of Z is,


\angle Z=29.5^(\circ)

User Carl Smotricz
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories