124k views
3 votes
Saw the system of equations using matrices. Use the Gaussian elimination method with back substitution

Saw the system of equations using matrices. Use the Gaussian elimination method with-example-1

1 Answer

1 vote

From the system of equation, we construct the matrix of coefficients:


\begin{bmatrix}{5} & {4} & {-4} &  \\ {1} & {1} & {5} &  \\ {1} & {-4} & {0} & 17 \\ & & & \end{bmatrix}

Now, we subtract the second row from the third row:


\begin{bmatrix}{5} & {4} & {-4} & 13 \\ {1} & {1} & {5} &  \\ {0} & {-5} & {-5} &  \\ & & & \end{bmatrix}

We exchange the first and the second row:


\begin{bmatrix}{1} & {1} & {5} & 2 \\ {5} & {4} & {-4} & 13 \\ {0} & {-5} & {-5} &  \\ & & & \end{bmatrix}

Subtracting 5 times the first row from the second row:


\begin{bmatrix}{1} & {1} & {5} &  \\ {0} & {-1} & {-29} & 3 \\ {0} & {-5} & {-5} & 15 \\ & & & \end{bmatrix}

Finally, we subtract 5 times the second row from the third row:


\begin{bmatrix}{1} & {1} & {5} &  \\ {0} & {-1} & {-29} &  \\ {0} & {0} & {140} & 0 \\ & & & \end{bmatrix}

Now, using back substitution:


\begin{gathered} 140z=0 \\ \Rightarrow z=0 \end{gathered}
\begin{gathered} -y-29z=3 \\ -y=3 \\ \Rightarrow y=-3 \end{gathered}
\begin{gathered} x+y+5z=2 \\ x-3=2 \\ \Rightarrow x=5 \end{gathered}

The solution set is:


\lbrace(5,-3,0)\rbrace

User Keshi
by
3.4k points