The total sum of the arcs in a circle is 360°. For us to be to determine the measures of arc AD, BC and DBC, let's first determine the value of x using the sum of all arcs.
![\text{ Arc AD + Arc DC + Arc CB + Arc BA = 360}^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/w50o9n7s95cszwjgew95l6tqz4xcldvm42.png)
We get,
![\text{ Arc AD + Arc DC + Arc CB + Arc BA = 360}^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/w50o9n7s95cszwjgew95l6tqz4xcldvm42.png)
![\text{ (12x) + (17x - 14) + (2x + 5) + 90 = 360}^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/s7fu6cegzcrkqt0m02187kw8w7kw73r5h6.png)
![\text{ 12x + 17x - 14 + 2x + 5 + 90 = 360}](https://img.qammunity.org/2023/formulas/mathematics/college/7bmx3ervpw6aohb2hwg887uaokc8m4mgmc.png)
![\text{ 31x + 81 = 360}](https://img.qammunity.org/2023/formulas/mathematics/college/nrzlgwi023ifize3cl4v7jm17u2ef0cxv0.png)
![\text{ 31x = 360 - 81}](https://img.qammunity.org/2023/formulas/mathematics/college/1y6ij4nxktdran7rny5heef8pw8r7cujyh.png)
![\text{ 31x = 279}](https://img.qammunity.org/2023/formulas/mathematics/college/pcttqwzmmcpwagq8nahsbom7j71d2l00qk.png)
![\text{ }\frac{\text{31x}}{31}\text{ = }\frac{\text{279}}{31}](https://img.qammunity.org/2023/formulas/mathematics/college/wnib7f6ncivb2mdl26iy8c7os4y5elgs1r.png)
![\text{ x = 9}^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/kryg3owi5m70okrb51406ii2zjiws8s812.png)
Let's use x = 9° to be able to get the measure of the three arcs.
For Arc AD,
Arc AD = 12x = 12(9) = 108°
For Arc BC,
Arc BC = 2x + 5 = 2(9) + 5 = 18 + 5 = 23°
For Arc DBC,
Arc DBC = 12x + 90 + 2x + 5 = 12(9) + 90 + 2(9) + 5 = 108 + 90 + 18 + 5 = 221°
IN SUMMARY:
x = 9°
Arc AD = 108°
Arc BC = 23°
Arc DBC = 221°