To find the half-life formula we will use the rule
![t_{(1)/(2)}=\frac{1}{\log _{(1)/(2)}(1-r)}](https://img.qammunity.org/2023/formulas/mathematics/college/3ptvusblqzesa31w97o3qdkqgp3335o56u.png)
Since the population of elephants decline by 5%, then
![\begin{gathered} r=(5)/(100) \\ r=0.05 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ce6n59j4261cq9x6jy0h244skvh0b4bib4.png)
Then, substitute r in the rule above by 0.05
![\begin{gathered} t_{(1)/(2)}=\frac{1}{\log _{(1)/(2)}(1-0.05)} \\ t_{(1)/(2)}=\frac{1}{\log _{(1)/(2)}(0.95)} \\ t_{(1)/(2)}=13.5134\text{ years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o374r9agv61tm8cpiljtqjrodkc4mtg04z.png)
Now, to find the new value we will use the rule
![N=N_0((1)/(2))^{(t)/(t_(_0))_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/pyk2z42069j3375mekc4n8om3fwkkthxr2.png)
N(0) is the initial value
![N_0=8661](https://img.qammunity.org/2023/formulas/mathematics/college/elpmrjwylbtw07wjbvsbe36bpjkfj2b1x9.png)
t is the time
![t=59](https://img.qammunity.org/2023/formulas/mathematics/college/ls9zdhibv5jf8f7pg8gnoyd0lge17z5njl.png)
Substitute these values in the rule above
![N=8661((1)/(2))^{(59)/(13.5134)}](https://img.qammunity.org/2023/formulas/mathematics/college/nl38q0ou64d0smi5v83iz4uyq55i8vx7cg.png)
Find the answer
![N=420.0103933](https://img.qammunity.org/2023/formulas/mathematics/college/whi8spshan05jnml73f0qor7rmp9vyhs6p.png)
Round it to the whole number, then
The number of elephants will be 420