The area of a circle is computed as follows:
![A=\pi\cdot r^2](https://img.qammunity.org/2023/formulas/mathematics/college/c3j55td07q4b6rf8hxaebd9fh4afvxzn0d.png)
If the radius is 7 cm, then the area is:
![A=\pi\cdot7^2=153.938\text{ sq. cm}](https://img.qammunity.org/2023/formulas/mathematics/college/27mezudmn8f9qzarzz8bbugvdx8c9ohtwg.png)
If the radius is 5 cm, then the area is:
![A=\pi\cdot5^2=78.539\text{ sq. cm}](https://img.qammunity.org/2023/formulas/mathematics/college/e5saa569or1d9xn0l5zulnvspk1wqgt3d0.png)
Then, the area of the "ring" made by the subtraction of a circle of a radius of 5 cm to a circle of a radius of 7 cm is:
153.938 - 78.539 = 75.399 sq. cm
In the picture of the problem, we see a part of this "ring". The whole area computed before corresponds to an angle of 360°, to calculate the area that corresponds to 120° we can use the next proportion:
![\begin{gathered} \frac{75.399\text{ sq. cm}}{x\text{ sq. cm}}=\frac{360\text{ \degree}}{120\text{ \degree}} \\ (75.399)/(x)=3 \\ (75.399)/(3)=x \\ 25.133\text{ sq. cm= x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1wnb1w0dv1aiaubyyq74ymdyhb1wmv4naq.png)
The perimeter of a circle is computed as follows:
![P=2\cdot\pi\cdot r](https://img.qammunity.org/2023/formulas/mathematics/college/gg2091fdtds7smomq7hoscnvkaobhswyqu.png)
If the radius is 7 cm, then the perimeter is:
![P=2\cdot\pi\cdot7=43.982\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/7oj3f21igrw469scwnt6t7u4ion8qf5f4g.png)
Given that 120° is 1/3 of a circle, then the length of the top arc is:
1/3*43.982 = 14.66 cm
If the radius is 5 cm, then the perimeter is:
![P=2\cdot\pi\cdot5=31.415\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/9vj62pm3ixq0u57yvzriupmmypdgy2j709.png)
Given that 120° is 1/3 of a circle, then the length of the bottom arc is:
1/3*31.415 = 10.471 cm
Then, the perimeter of the figure is:
14.66 + 10.471 + 2 + 2 = 29.131 cm