Answer:
![m\angle B=37.3\degree,m\angle C=97.7\degree,c=9.8m](https://img.qammunity.org/2023/formulas/mathematics/college/mj6176o5v5wp5lg7qq2r86w5luws6fd1df.png)
Step-by-step explanation:
Given:
![a=7m,b=6m,m\angle A=45\degree](https://img.qammunity.org/2023/formulas/mathematics/college/nggh2649r67k43perk33w8paw0hudm7t5q.png)
The given side is the longer of the two, so there will be only one solution.
Using Law of Sines:
![(a)/(\sin A)=(b)/(\sin B)](https://img.qammunity.org/2023/formulas/mathematics/college/sisbsbxxqz006gke6bfh2ny8zq9i7ddmkd.png)
Substitute the given values:
![\begin{gathered} (7)/(\sin45)=(6)/(\sin B) \\ 7*\sin B=6*\sin 45 \\ \sin B=(6*\sin 45)/(7) \\ B=\arcsin \mleft((6*\sin45)/(7)\mright) \\ B=37.3\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ow51cvzxdjp37veo6wa0nppdn8kbahg64x.png)
The sum of the angles in a triangle is 180 degrees.
![\begin{gathered} m\angle C=180-(\angle A+\angle B) \\ =180-(45+37.3) \\ =180-82.3 \\ m\angle C=97.7\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4b2uwucft5xeqnmhf10u1aum9lfxu0c8j5.png)
Finally, we find the length of c using the Sine rule.
![\begin{gathered} (c)/(\sin C)=(b)/(\sin B) \\ (c)/(\sin 97.7\degree)=(6)/(\sin 37.3) \\ c=(6)/(\sin37.3)*\sin 97.7\degree \\ c=9.8m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c0hl0ej10xatlxzwawo0nn5mf6gn4xkx9u.png)
Thus, the solution to the triangle is:
![m\angle B=37.3\degree,m\angle C=97.7\degree,c=9.8m](https://img.qammunity.org/2023/formulas/mathematics/college/mj6176o5v5wp5lg7qq2r86w5luws6fd1df.png)