The sum of the probabilities is always equal to 1. Summing up the probabilities given on the data set, we have
![\sum P(x)=0.7+0.15+0.09+0.04+0.02=1.00](https://img.qammunity.org/2023/formulas/mathematics/college/lpz3wr2cnndyg3bsrz897dv817t40tr9xs.png)
Given the probability distribution table, the mean number per inning can be computed as
![\begin{gathered} \mu=(0*0.7)+(1*0.15)+(2*0.09)+(3*0.04)+(4*0.02) \\ \mu=0.53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4hnwbrf8ghxxrngrcpmfghkbyxzj5e1qfn.png)
For the computation of the standard deviation, we need to solve first for the square of the difference of the number of innings on the mean. We have the following
![\begin{gathered} (0-0.53)^2=0.2809 \\ (1-0.53)^2=0.2209 \\ (2-0.53)^2=2.1609 \\ (3-0.53)^2=6.1009 \\ (4-0.53)^2=12.0409 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/spsw7h3nu7lu687v9odgtjv5i75a3qotrr.png)
We then multiply these values on the corresponding probability of each inning given in the probability distribution table. We have
![\begin{gathered} 0.2809*0.7=0.19663 \\ 0.2209*0.15=0.033135 \\ 2.1609*0.09=0.194481 \\ 6.1009*0.04=0.244036 \\ 12.0409*0.02=0.240818 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3hgmu4901v8dmkyfr80k5i7p7j25dvkidj.png)
We now get the sum of the values computed above and get the square of it.
![\begin{gathered} 0.19663+0.033135+0.194481+0.244036+0.240818 \\ \sigma=\text{ }\sqrt[]{0.9091}=0.953 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6eog728zqd04ds96orf2ddojrco5ta8cia.png)