Answer:
• BD = 19.3
,
• m∠CDB = 68.7°
Explanation:
In right triangle ABD:
• The side length ,opposite to, A, 47 degrees = BD
,
• The side length ,adjacent to, A = AB = 18
Using trigonometric ratios:
![\begin{gathered} \tan A=\frac{\text{opposite}}{\text{Adjacent}} \\ \implies\tan 47\degree=(BD)/(18) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ie7u4uwscl1c1hf14ew4fpipj6yshzlu36.png)
Cross multiply:
![\begin{gathered} BD=18*\tan 47\degree \\ BD=19.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xyu3zfpa7yswjejekck7iyshschmkufrdy.png)
Next, in triangle BCD:
• The length of the ,hypotenuse, BD = 19.3
,
• The side length, adjacent angle D = CD = 7
From trigonometric ratios:
![\begin{gathered} \cos D=(CD)/(BD) \\ \cos D=(7)/(19.3) \\ D=\arccos ((7)/(19.3)_{}) \\ D=68.7\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdje0k42aqontw91z8moh3tim2kihq0uwn.png)
Therefore, the measure of angle CDB is 68.7 degrees (correct to the nearest tenth).