Given the points:
Point M = (x1, y1) = (-5, 1)
Point N = (x2, y2) = (-5, 8)
To find the distance between point M and point N, use the distance formula below:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/dzmv1rerjpvrh7y9ed9nd93i81hhwfhy06.png)
Where
x1 = -5
y1 = 1
x2 = -5
y2 = 8
Substitute values into the formula and evaluate.
We have:
![\begin{gathered} d=\sqrt[]{(-5-(-5))^2+(8-1)^2} \\ \\ d=\sqrt[]{(-5+5)^2+(8-1)^2} \\ \\ d=\sqrt[]{(0)^2+(7)^2} \\ \\ d=\sqrt[]{0+49} \\ \\ d=\sqrt[]{49} \\ \\ d=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f72silglvkbabm7xmkg6u3ifkueh2abz4b.png)
Therefore the distance between point M and point N is 7 units.
ANSWER:
7 units