In a right triangle, we can use the pythagorean theorem to find the side lengths.
Algebraically, pythagorean theorem is:
![a^2+b^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdnnfwrccw5g60jmi691r5gcz9ekxf8waa.png)
Alternately, it is:
![\text{Leg}^2+\text{AnotherLeg}^2=\text{Hypotenuse}^2](https://img.qammunity.org/2023/formulas/mathematics/college/ok05svzui9gxrps0f1zxd1b9l797edkvpv.png)
Given,
Hypotenuse = 15
Leg = 10
Let's find QP:
![\begin{gathered} 10^2+\text{AnotherLeg}^2=15^2 \\ 100+QP^2=225 \\ QP^2=225-100 \\ QP^2=125 \\ QP=\sqrt[]{125} \\ QP=\sqrt[]{25*5} \\ QP=\sqrt[]{25}*\sqrt[]{5} \\ QP=5\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oxpzpbqn0jj3c32r82okl10o5v3u1anj7a.png)
With respect to Angle R, we can write:
![\begin{gathered} \cos R=(10)/(15) \\ R=\cos ^(-1)((10)/(15)) \\ R=48.19\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dm76glzycqf4wahnvu6tgoia4a1dhl3qzr.png)
We know 3 angles in a triangle add to 180 degrees. So, we can write:
![\begin{gathered} \angle Q+\angle P+\angle R=180 \\ \angle Q+90+48.19=180 \\ \angle Q+138.19=180 \\ \angle Q=180-138.19 \\ \angle Q=41.81\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2f79kp5ikdrawxx3lr3x652fmkdvb854mq.png)
The answers are:
![\begin{gathered} QP=5\sqrt[]{5}=11.18\text{ cm} \\ \angle R=48\degree \\ \angle Q=42\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ngoiycgn1y74sbgkgp0z4fgf3m1nlo2ffd.png)