Ok, so
Here we have the following expression:
![\sqrt[]{(5+12i)(12i-5)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vuloiiwfej0i9mxyx1w92sefpacp09s91f.png)
We could multiply the brackets:
![\sqrt[]{60i-25+144i^2-60i}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bczfu8gff5ruv4n8a6ye5eo4qekm0qtdvr.png)
And then simplify:
![\sqrt[]{144i^2-25}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kzs34ikj2lps06m1m23jd39kmxnxzxj1p5.png)
Remember that
![\begin{gathered} i=\sqrt[]{-1} \\ i^2=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r1pl16731jpm4wmn709eyeg27i0w2mp83c.png)
So if we replace:
![\begin{gathered} \sqrt[]{144(-1)-25} \\ \sqrt[]{-144-25} \\ \sqrt[]{-169} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cm1dlg1r56hffllacdw2gwq1nvnrq49qnu.png)
We could rewrite the last expression:
![\sqrt[]{-169}=\sqrt[]{-1}\cdot\sqrt[]{169}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xp6wujru1thnrpfk7tfc2r7758w247xl6o.png)
And that is:
![\sqrt[]{-1}\cdot\sqrt[]{169}=13i](https://img.qammunity.org/2023/formulas/mathematics/high-school/4h0y2mit24dwwpw4k9jy5qr06trz5ix140.png)
So the answer is 13i.
Written with the form a + bi:
This is 0 + 13i , which is 13i.