231k views
4 votes
Find all cube roots of the complex number in the image provided. Workout out the problem and leave the answers in polar form.

Find all cube roots of the complex number in the image provided. Workout out the problem-example-1
User Farajnew
by
5.4k points

1 Answer

4 votes

Given the complex number:


z=r\cdot(\cos \theta+i\cdot\sin \theta)\text{.}

The n n-th roots of the complex number z are given by:


w_k=\sqrt[n]{r}\cdot\lbrack\cos ((\theta+k\cdot360\degree)/(n))+i\cdot\sin ((\theta+k\cdot360\degree)/(n))\rbrack\text{ where }k=0,1,2,\ldots,n-1.

We must find all the cube roots of the following complex number:


z=64\cdot(\cos (219\degree)+i\cdot\sin (219\degree)).

For this number, we identify:


\begin{gathered} r=64, \\ \theta=219\degree. \end{gathered}

Using the formula above with these numbers, we get:


\begin{gathered} w_0=\sqrt[3]{64}\cdot\lbrack\cos ((219\degree+0\cdot360\degree)/(3))+i\cdot\sin ((219\degree+0\cdot360\degree)/(3))\rbrack=4\cdot\lbrack\cos (73\degree)+i\cdot\sin (73\degree)\rbrack, \\ w_1=\sqrt[3]{64}\cdot\lbrack\cos ((219\degree+1\cdot360\degree)/(3))+i\cdot\sin ((219\degree+1\cdot360\degree)/(3))\rbrack=4\cdot\lbrack\cos (193\degree)+i\cdot\sin (193\degree)\rbrack, \\ w_2=\sqrt[3]{64}\cdot\lbrack\cos ((219\degree+2\cdot360\degree)/(3))+i\cdot\sin ((219\degree+2\cdot360\degree)/(3))\rbrack=4\cdot\lbrack\cos (313\degree)+i\cdot\sin (313\degree)\rbrack\text{.} \end{gathered}

Answer


\begin{gathered} w_0=4\cdot\lbrack\cos (73\degree)+i\cdot\sin (73\degree)\rbrack \\ w_1=4\cdot\lbrack\cos (193\degree)+i\cdot\sin (193\degree)\rbrack \\ w_2=4\cdot\lbrack\cos (313\degree)+i\cdot\sin (313\degree)\rbrack \end{gathered}
User Sergio Muriel
by
6.3k points