Answer:
![\begin{gathered} Largest\text{ possible area = 125000 m}^2 \\ \\ The\text{ dimension which will give the largest posible area:} \\ length\text{ = 500 m, width = 250 m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6urj6gucs17ve87s5t6xoma2as1mwp814x.png)
Step-by-step explanation:
The total length of the fence = 1000m
Assumption: The farmer uses the existing boundary fence as one of the sides
This means we will be considering 3 sides
Total length = 2 widths + 1 length
let the width of the fence = w
2 widths = 2(x) = 2w
Total length = 2w + length
1000 = 2w + length
length = 1000 - 2w
To solve the question, we will make an illustration of the fencing
Area of the fence = length × width
![\begin{gathered} \text{A = \lparen1000 - 2w\rparen}*\text{ w} \\ \text{A = 1000w - 2w}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/runxhhqa3hjsbdip1jbyndu5yrgcdvuqlc.png)
To get the largest possible area, we will find the derivative with respect to w:
![\begin{gathered} (dA)/(dw)\text{ = }\frac{d(1000w\text{ - 2w}^2)}{dw} \\ A^(\prime)\text{ = 1000 - 4w} \\ We\text{ will equate the derivative to zero:} \\ 0\text{ = 1000 - 4w} \\ 4w\text{ = 1000} \\ \\ divide\text{ both sides by 4:} \\ w\text{ = 1000/4} \\ w\text{ = 250} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvh5l4w9z0ixyubfdftdpdtu7r46m96de9.png)
To get the length, we will substitute the value of the width into the length formula:
![\begin{gathered} \text{length = 1000 - 2w } \\ length\text{ = 1000 - 2\lparen250\rparen} \\ length\text{ = 500 m} \\ \\ width\text{ = 250 m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svui5b5dp2yr1z9xn3dwsvfd1ns1twydnp.png)
The largest possible area:
![\begin{gathered} Area\text{ = l }* w\text{ = 500 }*\text{ 250} \\ Largest\text{ possible area = 125000 m}^2 \\ \\ The\text{ dimension which will give the largest posible area:} \\ length\text{ = 500 m, width = 250 m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jq8zpsn97mg99s7r2a5yxme1tdkey3ive6.png)