Answer
∠C = 68°
Side length AC = 22.9
Side length BC = 14.3
Step-by-step explanation
Given:
∠A = 37°
∠B = 75°
IABI = c = 22
What to find:
∠C, IACI, and IBCI
Step-by-step solution:
To find ∠C
∠A +∠B + ∠C = 180° (sum of angles in a triangle)
37° + 75° + ∠C = 180°
112° + ∠C = 180°
Combine the like terms
∠C = 180° -112°
∠C = 68°
To find IACI
Let IACI = b
Using Sine rule:
![(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/college/ls3qjjonu7sjrypsgtrhv4uro5mda31w5v.png)
Substitute c = 22, B = 75° and C = 68° into the sine rule formula above
![\begin{gathered} (b)/(\sin75\degree)=(22)/(\sin 68\degree) \\ (b)/(0.9659)=(22)/(0.9272) \\ \text{Cross multiply} \\ 0.9272b=21.2498 \\ \text{Divide both sides by 0.9272} \\ (0.9272b)/(0.9272)=(21.2498)/(0.9272) \\ b=22.918 \\ To\text{ the nearest tenth,} \\ b=22.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oyv1f42nskjvy8phqbi02es3fvj4pj57ij.png)
So side length IACI = 22.9
To find IBCI
Let IBCI = a
Using Sine rule:
![(a)/(\sin A)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/college/9xo75exlaypi1h57y2eun6g2mwts4gh2lv.png)
Plug in c = 22, A = 37°, and C = 68° into the formula
![\begin{gathered} (a)/(\sin37\degree)=(22)/(\sin 68\degree) \\ (a)/(0.6018)=(22)/(0.9272) \\ \text{Cross multiply} \\ 0.9272a=22*0.6018 \\ \text{0}.9272a=13.2396 \\ \text{Divide both sides by 0.9272} \\ (0.9272a)/(0.9272)=(13.2396)/(0.9272) \\ a=14.279 \\ To\text{ the nearest tenth,} \\ a=14.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ycmcj1nw9i0u9deqj8cpiva42bktj6n7f4.png)
Therefore, side length IBCI = 14.3