SOLUTION:
Case: Volume of Sphere
Method:
a) The volume of a sphere whose diameter, d= 28in
The radius,
r= 28/2
r= 14 in
The Volume, therefore:

b) When half of the volume is used,

c) The radius of the halved volume
![\begin{gathered} V=(4)/(3)\pi r^3 \\ 5747.02=(4)/(3)\pi r^3 \\ r^3=(3*5747.02)/(4\pi) \\ r^3=1372 \\ r=\sqrt[3]{1372} \\ r=11.11\text{ }inches \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cv4suwp4rz5f6e2eywe5tfgorxdbgyd87s.png)
Final answer: (To 2 d.p)
a) 11494.04 cubic inches
b) 5747.02 cubic inches
c) 11.11 inches