SOLUTION:
Case: Volume of Sphere
Method:
a) The volume of a sphere whose diameter, d= 28in
The radius,
r= 28/2
r= 14 in
The Volume, therefore:
![\begin{gathered} V=(4)/(3)\pi r^3 \\ V=(4)/(3)\pi*14*14*14 \\ V=11494.04\text{ }cubic\text{ }inches \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4oisg1awllh19kxwh1qbhbryivfkvg90tx.png)
b) When half of the volume is used,
![\begin{gathered} V=(1)/(2)V_0 \\ V=(1)/(2)*11494.04 \\ V=5747.02\text{ }cubic\text{ }inches \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a5cpql0ozh0z8otgzmpnq573zhnrfgagxs.png)
c) The radius of the halved volume
![\begin{gathered} V=(4)/(3)\pi r^3 \\ 5747.02=(4)/(3)\pi r^3 \\ r^3=(3*5747.02)/(4\pi) \\ r^3=1372 \\ r=\sqrt[3]{1372} \\ r=11.11\text{ }inches \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cv4suwp4rz5f6e2eywe5tfgorxdbgyd87s.png)
Final answer: (To 2 d.p)
a) 11494.04 cubic inches
b) 5747.02 cubic inches
c) 11.11 inches