Step 1: Write the general form of a cubic equation having the same zeros
A cubic function having the same zeros take the form:
![y=k(x-a)^3](https://img.qammunity.org/2023/formulas/mathematics/college/ucn2i1qlf0e0l0ennnsj5fia83a6i5gsky.png)
Step 2: Find the constant, k
Since the graph passes through the point (0, -5), substitute x = 0 and y = -5 into the general equation to find the constant, k.
![\begin{gathered} -5=k(0-a)^3 \\ -5=k(-a)^3 \\ -5=-ka^3 \\ k\text{ = }(-5)/(-a^3) \\ k\text{ = }(5)/(a^3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/joz68gyo0g957eh6cvghq9iuaurafocmzf.png)
Step 3: Substitute the value of k into the general equation to find the equation for the cubic polynomial function
![\begin{gathered} y\text{ = }(5)/(a^3)(x-a)^3 \\ y\text{ = }(5(x-a)^3)/(a^3) \\ y\text{ = 5(}(x-a)/(a))^3 \\ y\text{ = 5(}(x)/(a)-(a)/(a))^3 \\ y\text{ = 5(}(x)/(a)-1)^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbchdysa7vx9hpui2bsdklv70qf6n2375k.png)
The equation for the cubic polynomial function is therefore:
![y\text{ = }(5)/(a)(x-1)^3](https://img.qammunity.org/2023/formulas/mathematics/college/hm7uj59p3wi4r67xq02vr1c9dcbi5wyfvl.png)