146k views
3 votes
Please help with this question!!​

Please help with this question!!​-example-1

1 Answer

6 votes

Answer:

Proof is given below.

Explanation:

Given 2 × 2 matrix:


\textbf{M}=\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)

An identity matrix is a square matrix in which the elements on the leading diagonal (starting top left) are all 1 and the remaining elements are zero.

Therefore, the 2 × 2 identity matrix is:


\textbf{I}=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)

To show that
\textbf{M}^2=2\textbf{M}-2\textbf{I} :


\begin{aligned}\textbf{M}^2&=\textbf{M} \cdot \textbf{M}\\\\&=\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)\\\\&=\left(\begin{array}{cc}2\cdot2+(-2)\cdot1&2\cdot(-2)+(-2)\cdot0\\1\cdot2+0\cdot1&1\cdot(-2)+0\cdot0\end{array}\right)\\\\&=\left(\begin{array}{cc}2&-4\\2&-2\end{array}\right)\\\\&=2\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\end{aligned}


\begin{aligned} \\\\&=2\left[\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)-\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right]\\\\&=2[\textbf{M}-\textbf{I}]\\\\&=2\textbf{M}-2\textbf{I}\end{aligned}

Therefore:


\begin{aligned}\textbf{M}^4 & =(\textbf{M}^2)^2\\\\&=(2\textbf{M}-2\textbf{I})^2\\\\&=4(\textbf{M}-\textbf{I})^2\\\\&=4\left[\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)-\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right]^2\\\\&=4\left[\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\right]^2\\\\&=4\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\end{aligned}


\begin{aligned}&=4\left(\begin{array}{cc}1\cdot1+(-2)\cdot1&1\cdot(-2)+(-2)(-1)\\1\cdot1+(-1)\cdot1&1\cdot(-2)+(-1)(-1)\end{array}\right)\\\\&=4\left(\begin{array}{cc}-1&0\\0&-1\end{array}\right)\\\\&=-4\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\\\\&=-4\textbf{I}\end{aligned}

User Cuonglm
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories