Answer:
Proof is given below.
Explanation:
Given 2 × 2 matrix:

An identity matrix is a square matrix in which the elements on the leading diagonal (starting top left) are all 1 and the remaining elements are zero.
Therefore, the 2 × 2 identity matrix is:

To show that
:

![\begin{aligned} \\\\&=2\left[\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)-\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right]\\\\&=2[\textbf{M}-\textbf{I}]\\\\&=2\textbf{M}-2\textbf{I}\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hgmhx2l8ncnwk03mt067vw2ilyxz749hil.png)
Therefore:
![\begin{aligned}\textbf{M}^4 & =(\textbf{M}^2)^2\\\\&=(2\textbf{M}-2\textbf{I})^2\\\\&=4(\textbf{M}-\textbf{I})^2\\\\&=4\left[\left(\begin{array}{cc}2&-2\\1&0\end{array}\right)-\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\right]^2\\\\&=4\left[\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\right]^2\\\\&=4\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\left(\begin{array}{cc}1&-2\\1&-1\end{array}\right)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9zersxs7svnzmrc5sdxif7td82ym3tjl5r.png)
